$f(x)=\frac{1}{x}$

Domain
 Range

Continuous
Increasing
Decreasing
Constant
Left End
Right End
Symmetry
x-intercepts
y-intercepts
VA
HA
Bounded
Extrema

Transformations with rational functions:
If possible - rewrite in transformation form:

$$
\begin{array}{ll}
\begin{array}{l}
\text { If possible - rewrite in } \\
\text { transformation form: }
\end{array} & \text { If not - do the division: } \\
\frac{2}{x+3} & \frac{3 x-7}{x-2} \\
2 \frac{1}{x+3} & \text { up 3, right 2, flip over x-axis }
\end{array}
$$

Review
Find the vertical and horizontal asymptotes:
$V=$ set den $=0$ of Solve $)$ (compare degrees

$$
\text { 1. } y=\frac{3 x-5}{x^{2}-4} \sqrt{x^{2}-4=0} \sqrt{x^{2}-\sqrt{4}} \quad y=0
$$

2. $y=\begin{array}{cc}2 x^{3} & \begin{array}{l}x= \pm 2 \\ x-5 \\ x-5=0 \\ x=5\end{array} \\ x\end{array}$
oblige
3. $y=\frac{5 x}{(x+2)} \frac{x+2=0}{x+2} \quad y=\frac{5}{1} \quad y=5$
2.6 Graphs of Rational Functions

Goal - sketch a graph with x \& y intercepts, vertical and horizontal asymptotes
x-intercepts: where cross x-axis
$\frac{z}{w}$

$$
y=0
$$

numerator -0 d solve
y-intercepts: Where cross y - $a x$ is

$$
x=0
$$

Plug in ofor x h solve

Find the x \& y intercepts:

$$
\begin{array}{ll}
\begin{array}{ll}
\text { 1. } y=\frac{3 x-5}{x^{2}-5 x+6} & \text { 3. } y=\frac{x^{2}-2 x+3}{x+2} \\
3 x-5=0 & x^{2}-2 x+3=0 \\
+5+5 & x=\frac{2 \pm \sqrt{4-4(1)(3)}}{3 x}=\frac{5}{3} \\
x=5 / 3 & \text { no } x-i n t e r c e p t \\
\frac{(5 / 3,0)}{3} & y=3 / 2 \\
y=\frac{3(0)-5}{0^{2}-5(0)+6} \\
y=\frac{-5}{6}(0,-5 / 6)
\end{array}
\end{array}
$$

Asymptotes:

check for holes before VA!! (by reducing the fraction if possible)
vertical (VA): caused by dividing by 0
the graph approaches $-\infty$ or ∞
on each side of the asymptote
to find the asymptote set den $=0$ and solve
end behavior:(horizontal (HA) or oblique (OA)):
to find the asymptote - compare the degrees of the num and den. if top heavy (OA):
bottom heavy (HA): $y=0$
equal (HA): divide coefficients
oblique: (more later)

Find the holes, vertical and horizontal asymptotes:

$$
\begin{array}{ll}
\text { 1. } y=\frac{3 x)-5}{x^{2}-5 x+6} & 2 x=0^{2 .} y=\frac{4 x}{2 x^{2}-6 x} \\
y=\frac{3 x-5}{(x-3)(x-2)} & \text { hole } \\
\text { hA: } y=3=\frac{2(2 x)}{2 x(x-3)} \\
\text { HA: }: y=0 & \text { VA: } y=\frac{2}{x-3} \\
& \text { HA: } y=3
\end{array}
$$

Oblique/Slant Asymptotes

top heavy rational functions have oblique asymptotes (end behavior models)

to find the degree of the éfd behavior model - divide the leading terms and reduce

to find the actual asymptote: divide the fractions

Find the degree of the end behavior model \& find the oblique asymptote:

Limits

limits are about y behavior $\$ 27$
Limits about end behavior:
(related to horizontal asymptotes)
$\lim f(x)$
this means the right end

there will be 4 possible answers: $0, \infty,-\infty, \#$

$$
\begin{array}{ll}
\text { 3. } y=\frac{x^{2}-2 x+3}{x+2} & \text { 4. } y=\frac{x^{4}-4 x^{2}+4}{x-2} \\
\boldsymbol{y}=\mathbf{X}-\mathbf{4}^{2} & y=\mathbf{X}^{3}+2 \mathbf{x}^{2} \\
\lim _{x \rightarrow \infty} f(x)=\infty & \lim _{x \rightarrow \infty} f(x)=\infty \\
\lim _{x \rightarrow-\infty} f(x)=-\infty & \lim _{x \rightarrow-\infty} f(x)=-\infty
\end{array}
$$

At other places - usually around vertical asymptotes
$\lim f(x) \quad$ When here is a ammer hereyou look at that "x" location
the " + " or "-" mean from the left or right of the \#

$\lim _{x \rightarrow 2} f(x)$ $x \rightarrow 2^{-}$

power of the factor for the asymptote tells me if: odd powered factor - graph is in opp directions on each side of asy.
even powered factor - graph is the same direction on each side of asy.

$$
\begin{aligned}
& y=\frac{x^{2}-9}{x^{2}-5 x+6}=\frac{(x+3)(x-3)}{(x-3)(x-2)}=\frac{x+3}{x-2} \\
& \lim _{x \rightarrow 2^{+}} f(x)=\infty \\
& \lim _{x \rightarrow 2^{-}} f(x)=-\infty
\end{aligned}
$$

Find the intercepts, asymptotes, limits at vertical asymptotes, analyze and draw the graph of

$$
\begin{aligned}
& f(x)=\frac{x-1}{x^{2}-x-12} \\
& y=\frac{x-1}{(x-4)(x+3)} \\
& x-\operatorname{int}:(1,0) \\
& y-\operatorname{int}:(0,1 / 12)
\end{aligned}
$$

$$
\begin{aligned}
& V A: X=4,-3 \\
& H A: u=0
\end{aligned}
$$

$$
H_{A}: y=0
$$

$$
\text { Ends: } \rightarrow 0
$$

$$
x=4 O P P
$$

$$
x=-3 \text { Op }
$$

$$
\begin{aligned}
& x \text {-intercept } \\
& y \text {-intercept } \\
& \vee A \\
& \text { HA (oblique) }
\end{aligned}
$$

end Behavior
power factors Denominator

