Warm-Up

Write an equation with zeros of: 3, 5, -2 $y=(x-3)(x-5)(x+2)^{2}$ Factored

Write the polynomial in standard form:
$\mathrm{y}=(\mathrm{x}+3)(\mathrm{x}-2)$
$y=x^{2}+x-6$ standard
Write an equation of minimum degree with given zeros and multiplicities:
1 with multi of 3
-3 with multi of 2
0 with multi of 1

2.5 Complex zeros \& Fundamental Thm of Algebra

Top Half of Card 27

Fundamental Thm of Alg: an nth degree polynomial will have n zeros
(may be a combination of real and complex \& some zeros may be repeated)

Odd functions will always have at least one real zero - why??

Complex Conjugates: complex factors come in conjugate pairs
(if 3 i is a zero, -3 i is also)

How many real and complex zeros does each have??

Write a polynomial function of minimum degree with the following zeros:
$\xrightarrow{4,7,2 i}-2 i$
$y=(x-4)(x-7)(x-2 i)(x+2 i)$

Bottom Half of Card \#27

[inear Factorization Thm: a polynomial of nth degree has n linear factors
(some factors may be complex)

$$
\begin{aligned}
& x-6 x^{3}+10 x^{2}-6 x+9 \\
& (x-3)(x+3)(x-i)(x+i)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Find all zeros and write a linear factorization of } \\
& \text { the following polynomial: } \pm 1 \\
& 0^{4}+x^{3}+5 x^{2}-x-6 \\
& \frac{ \pm 1 \pm 2 \pm 3 \pm 6}{ \pm 1} \\
& (x+1) \\
& x=\frac{-1 \pm \sqrt{1^{2}-4(6)}}{2} \frac{d 116}{116(2)} \\
& x=-1 \pm \sqrt{1-24} \quad x^{2}+x+6=0
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Linear } \\
\text { factoing-ton })(x-1)(x-1)\left(x-\left(\frac{-1+i \sqrt{23}}{2}\right)\right)
\end{array} \\
& \left(x-\left(\frac{-1-i \sqrt{23}}{2}\right)\right) \\
& x+\frac{1-i \sqrt{23}}{2} \\
& x+\frac{1+i \sqrt{23}}{2}
\end{aligned}
$$

Write the following polynomial in standard form:

$$
\begin{aligned}
& y=(x+3 i)(x-3 i) \\
& x^{2}-3 i x+3 i x-9(i) \\
& \left(x^{2}+9\right)(-9)(-1)
\end{aligned}
$$

Write a polynomial function of minimum degree with the following zeros in standard form: $2+3 i=\Delta$

$$
\begin{aligned}
& -4,2+3 i, 2-3 i \\
& y=(x+4)\left(x-(2+3 i)(x-(2-3 i))^{2-3 i}=0\right. \\
& y=(x+4)(x-\Delta)(x-\infty) \\
& y=(x+4)\left(x^{2}-x-x-x+0 \Delta\right) \\
& y=(x+4)\left(x^{2}-x(2-3 i)-x(2+3 i)+(2-3 i)(2+3 i)\right) \\
& y=(x+4)\left(x^{2}-2 x+3 i x-2 x-3 i x+4-9 i^{2}\right) \\
& y=(x+4)\left(x^{2}-4 x+13\right) \\
& y=x^{3}-4 x^{2}+13 x+4 x^{2}-16 x+52 \\
& y=x^{3}-3 x+52
\end{aligned}
$$

Write an equation of minimum degree with given zeros and multiplicities:

3 with multi of 2
$5+\mathrm{i}$ with multi of 1

Every Polynomial function with real coefficients can be written as a product of linear factors and irreducible quadratic factors. Irreducible Quadratic: Quadratic with real coefficients but no real zeros

$$
f(x)=3 x^{5}-2 x^{4}+6 x^{3}-4 x^{2}-24 x+16
$$

