2.4 Real Zeros for a Polynomial Divide: $50213 \div 7$

$$
\begin{aligned}
& 50213=(7)(7173)+2 \\
& \frac{50213}{7}=7173+2 / 7
\end{aligned}
$$

Dividing Polynomials - Long Division

Steps: 1. Write as a division problem w/ dividends \& divisor in descending order, leaving spaces for missing terms in the dividend (0x)
2. Divide leading terms and write the result above the 1st term in the dividend

3. Multiply the result from \#2 by the divisor \& write the product under the dividend
4. Put () around result from \#3, distribute the subtraction sign \& then add
5. Bring down remaining terms \& repeat until there are no remaining terms in the dividend
6. Answer can be written in several ways - see back

$$
\begin{aligned}
& \text { Divide using long division: } \\
& \text { 1. } \begin{array}{r}
\left(5 x^{3}+3 x-82 \div(x-1)+8\right. \\
0 x-1 \sqrt{5 x^{3}+5 x^{3}+8 x^{2}+3 x-8} \\
-5 x^{3}-5 x^{2} \\
\frac{-5 x^{2}}{}+3 x \\
\frac{5 x^{2}-5 x}{8 x}-8 \\
\frac{8 x-8}{0}
\end{array}
\end{aligned}
$$

Polynomial form or fraction form

$$
\begin{aligned}
& 4 f(x)=(x-1)\left(5 x^{2}+5 x+8\right)+0 \\
& \frac{f(x)}{x-1}=5 x^{2}+5 x+8+0 / x-1
\end{aligned}
$$

Answer Forms

 When $r(x)=0$ we say that $d(x)$ divides evenly into f (x)

Fraction Form:

$$
\frac{f(x)}{d(x)}=\frac{d(x) \cdot q(x)+r(x)}{d(x)} \quad \frac{f(x)}{d(x)}=q(x)+\frac{r(x)}{d(x)}
$$

$$
\begin{aligned}
& \begin{array}{l}
\left(x^{4}-2 x^{3}+3 x^{2}-4 x+6\right) \div\left(2 x+x^{2}+1\right) \\
x^{2}+2 x+1 \sqrt{x^{2}-4 x+10} \\
\frac{x^{4}-2 x^{3}+3 x^{2}-4 x+6}{x^{4}+2 x^{3}+x^{2}} \\
\\
\frac{-4 x^{3}+2 x^{2}-4 x}{-4 x^{3}-8 x^{2}-4 x} \\
-10 x^{2}+10 x+6 \\
10 x^{2}+20 x+10
\end{array} \\
& f(x)=\left(x^{2}+2 x+1\right)\left(x^{2}-4 x+10\right)^{20 x-4}+(-20 x-4)
\end{aligned}
$$

Dividing Polynomials - Synthetic division:

Can only be used to divide by a linear function
steps:

1. Write the terms of the dividend in descending order. Write the coeff. of the dividend in the first row using zeros for any missing terms not found in the dividend.
2. Write the zero, r, of the divisor ($x-r$), in the box.
3. Drop the 1 st coeff. to the last row.
4. Multiply 1 st coeff. by r \& put product under the 2 nd coeff.
5. Add product from \#4 to 2 nd coeff. \& write the sum in the last row.
6. Repeat \#4 \& \#5 until all coeff. have been used.
7. Write answer by putting variables behind the \#'s in the last row. Start with 1 degree less than the dividend polynomial.

$\frac{x^{3}-5 x^{2}+3 x-2}{x+1}$		
-11	1	-5
	3	-2
$\frac{f(x)}{x+1}=x^{2}-6 x+9-11 / x+1$	-6	-9

$$
\left(x^{3}-x^{2}+2 x-7\right) \div(2 x-1) \quad \begin{aligned}
& \text { to get }(x-r): \text { divide num. } \& \text { den } . \\
& \text { by } 2 \text { to get }\left(x-\frac{1}{2}\right)
\end{aligned}
$$

What is the significance of the answers??
Remainder Theorem \& Factor Theorem

Remainder Theorem: $\mathrm{f}(\mathrm{k})=$ remainder
this means - evaluate the function for the value of the suspected zero (plug it in for x)

Factor Theorem: if the remainder is 0 then you have found a root!!! $\mathrm{f}(\mathrm{k})=0$)

Use the Remainder \& Factor Thm. to find if the first polynomial is a factor of the second: (there are 2 ways)
(x-3, $x^{3}-x^{2}-x-15$
$3 f(3)=(3)^{3}-(3)^{2}-3-15$ 3] 1

$$
=27-9-3-15
$$

$$
=18-3-15
$$

$$
=15-15
$$

$x-3=0$
X.3 is a Factor

Rational Root Theorem: $\boldsymbol{\# 2 2 / 2 3}$

 if all coefficients are integers and the constant is not 0 , then all possible rational roots are:$$
x= \pm \frac{\text { factors of constant }}{\text { factors of leading coefficient }}
$$

$$
\text { or } x= \pm \frac{p}{q} \text { when }
$$

$$
\mathrm{p}=\text { factors of constant }
$$

$$
\mathrm{q}=\text { factors of leading coefficient }
$$

Find all possible rational roots \& determine if any are zeros

$$
y^{2} x^{4}-7 x^{3}-8 x^{2}+14 x \llbracket 8
$$

$$
\begin{aligned}
& =\frac{ \pm 0,4, \pm 4, \pm \frac{1}{2}, 28}{+4-1 / 2} \\
& 2(4)^{4}-7(4)^{3}-8(4)^{2}+14(4)+8 \\
& =0 \\
& 2(-1 / 2)^{4}-7(-1 / 2)^{3}-8(-1 / 2)^{2}+14(-1 / 2)+8 \\
& =0
\end{aligned}
$$

