2.3 Polynomial Functions

Polynomial Functions

Standard Form of a polynomial function:

term: each part of the polynomial - separated by + or (-) leading term: term with the highest power or 1st term if written in standard form (poly. must be multiplied out to find this) coefficient: number in front of the variable constant: number w/o a variable

Degree: highest power found in any given term

What is the degree of:

$$
y=-89 x^{6}+3 x^{5}+2 x^{3}-7 x+2
$$

$$
y=(x-5)^{2}(x+2)^{3}
$$

$$
y=x^{2}(2 x-3)(x+5)^{3}(x+1)^{2}
$$

$$
D: 8
$$

$$
y=\frac{5}{3} x^{5}+3 x^{3}-7 x^{2}+x-12
$$

$$
3 D: 5
$$

Transformations

Graph x^{2} and x^{4}
Graph x^{3} and x^{5}

Describe the Transformation, sketch the graph compute y-intercept

$$
\begin{gathered}
g(x)=4(x+1)^{3} \\
y=4(0+1)^{3} \\
y=4(1) \\
y=4 \\
(0,4)
\end{gathered}
$$

$$
\begin{aligned}
& h(x)=-(x-2)^{4}+5 \\
& y=-(0-2)^{4}+5 \\
& y=-(-2)^{4}+5 \\
& y=-16+5 \\
& y=-11 \\
& (0,-11)
\end{aligned}
$$

Graphing Combination Functions

$$
f(x)=x^{3}+x \quad \text { 1. Factor } \quad \text { 2. Find Zeros } \quad g(x)=x^{3}-x
$$

What happens if we make the leading coefficient (-)?

End Behavior
Graph $f(x)=x^{3}-4 x^{2}-5 x-3 \quad g(x)=x^{3}$

What happens as we continue to zoom out?

Where is each end going?

End Behavior (polynomial)

End Behavior is determined by the degree of the polynomial and the coefficient of the leading term. The mathematical notation is written using limits.

Odd Degree: the left \& right ends go in opp. directions (+) coeff.
$(-)$ coeff.
$\lim _{x \rightarrow \infty} f(x)=\infty$
$\lim _{x \rightarrow-\infty} f(x)=-\infty \quad \lim _{x \rightarrow-\infty} f(x)=\infty$

Even Degree: both ends go in the same direction
$(+)$ coeff. (-) coeff.
both up
$\lim _{x \rightarrow \infty} f(x)=\infty$
$\lim _{x \rightarrow-\infty} f(x)=\infty$
$\lim _{x \rightarrow-\infty} f(x)=-\infty$

Name the degree \& the sign of the coefficient of the leading term based on the end behavior:

1

EVEN

Graph and decide end behavior

a) $f(x)=x^{3}+2 x^{2}-11 x-12$
$\lim _{x \rightarrow \infty} f(x)=\infty \quad \lim _{x \rightarrow-\infty} f(x)=-\infty$
b) $g(x)=2 x^{4}+2 x^{3}-22 x^{2}-18 x-35$
$\lim _{x \rightarrow \infty} g(x)=\varnothing$
$\lim _{x \rightarrow-\infty} g(x)=\varnothing$

Zeros(roots) and Mulitiplicity

Zeros: solutions for x when $\mathrm{y}=0$
can be found in the factors $(x-a)$ of the polynomial.
How do we find the zeros??
factor
quadratic formula
use the calculator
What are the differences between factors and zeros???

$\begin{array}{ll}\text { Find the zeros of: } & \\ \begin{array}{l}a=c=6\end{array} & y\left(3 x^{2}-5 x+2\right. \\ & \\ & x\left(3 x^{2}-3 x-2 x+3\right) \\ & x(3 x(x-1)-2(x-1)) \\ & x(x-1)(3 x-2)=0 \\ & 0,1,2 / 3\end{array}$
Given the zeros, write a polynomial equation of given degree:
degree 5, zeros: $0,2,-5$
degree 4 , zeros: $-2,2$

$$
(x+2)^{2}(x-2)^{2}
$$

degree 4, zeros: $-5,0,5$

$$
x^{2}(x+5)(x-5)
$$

Practice:

Find the zeros of:

$$
y=x^{4}-8 x^{2}-9
$$

multiplicity
18
The power of the factor determines the nature of the intersection at the point $x=a$.
(This is referred to as the multiplicity.)
Straight intersection:
$(x-a)^{1} \quad$ The power of the zero is 1 .
Tangent intersection: BOUMCCS
$(x-a)^{\text {even }}$ The power of the zero is event Kisses
Inflection intersection: (like a slide through) $(x-a)^{\text {odd }} \quad$ The power of the zero is odd.
$y=(x+3)^{2}(x-2)^{3}(x-4)$
$-3 \cdot 22: 34: 1$
What are the zeros??
What is the mulitplicity (power) of the zero??

How will it intersect the x -axis??

Practice:

Sketch the graph of: $y=x^{2}(x+5)^{3}(x+1)^{2}$
$0: 2:$ Tangen'/ Bounce
$0: 2$:Tangent/Bounce fliction
$-5: 3$ SLIde/kisses/infletion
-1:2:Tangent/Bounce
D:7 ODD +
$y=-5 x^{2}(x-2)^{2}(x+4)^{2}$
$0: 2 \quad 2: 2-4: 2$
tan/bounce
Geven-

