Polynomial Functions

For n, a non-negative integer with $a_{0}, a_{1}, \ldots . a_{n}$ real numbers then:

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}
$$

is a Polynomial Function of degree n with a leading coefficient a_{n}

2.1 Linear \& Quad. Functions

Regression Equations: $-1 \leq r \leq 1$

Forms of equations:
slope - intercept

$$
y=m x+b
$$

standard form
point slope

$$
\frac{\mathrm{Ax}+\mathrm{By}=\mathrm{C}}{\mid y-y_{1}=m\left(x-x_{1}\right)}
$$

Writing Equations of Lines

$$
y=m x+b
$$

Find the eq of the line given: $f(1)=3$

$$
f(3)=7
$$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-y_{1}}=\frac{7-3}{3-1}=\frac{4}{2}=2
$$

$$
\begin{gathered}
y-3=2(x-1) \\
y-3=2 x-2 \\
+3+3 \\
y=2 x+1
\end{gathered}
$$

Average Rate of Change

 Linear functions have a constant nonzero rate of changeThe average rate of change of a function $y=f(x)$ between $x=a$ and $x=b$ is:

$$
\frac{f(b)-f(a)}{b-a}
$$

Find the average rate of change of $f(x)=3 x+7$ between $x=3$ and $x=9$

$$
\begin{aligned}
& \frac{f(9)-f(3)}{9-3}=\frac{3 \cdot 9+7-(3 \cdot 3+7)}{6}=\frac{34-16}{6} \\
& \frac{18}{6}=3
\end{aligned}
$$

Quadratic Equations:

Standard Form:

$$
y=a x^{2}+b x+c
$$

Graphing or Vertex Form:

$$
\begin{aligned}
y= & a(x-\underline{h})^{2}+\underline{k} \\
& \text { vertex: }(\mathrm{h}, \mathrm{k}) \\
& \text { axis of symmetry } \mathrm{x}=\mathrm{h}
\end{aligned}
$$

how do you change from standard to vertex form???

Completing the Square

process used to write an eq. in graphing form
Steps:

1. make sure eq. is in the form: $y=a x^{2}+b x+c$
2. write eq. w/ blanks for missing terms to be added:

$$
y+_{--}=a x^{2}+b x+_{--}+c
$$

3. Put () around: $\left(a x^{2}+b x+\ldots\right)$
4. Factor out "a" from $\mathrm{ax}^{2} \& \mathrm{bx}$ terms: $y+_{-}=a\left(x^{2}+\frac{b}{a} x+_{-}\right)+c$
5. write eq. in perfect sq. form w/ blanks: $y+_{-}=a(x+)^{2}+c$ 6. divide $\frac{b}{a}$ in half \& write in 2 nd blank of step \#5
6. square the \# from step $6 \&$ write in 2 nd blank from step \#4
7. Multiply \# from step 7 by "a" \& write in all remaining blanks
8. Simplify

$$
y=-2 x^{2}+6 x+1
$$

$$
\begin{gathered}
y=x^{2}+4 x-7 \\
y+7+4=x^{2}+4 x+4 \\
y+11=(x+2)^{2} \quad \vee:(-2,-11) \\
-11=\frac{4}{2}=2^{2}=4 \\
y=(x+2)^{2}-11 \quad A: x=-2 \\
y=3 x^{2}+4 x-2 \\
y+2 t=3 x^{2}+4 x \\
y+\frac{20+}{3}+\frac{4}{3}=3\left(x^{2}+\frac{4}{3} x+\frac{16}{36}\right) \\
\frac{3 \cdot 49}{9} y+\frac{10}{3}=3\left(x+\frac{4}{6}\right)^{2} \\
y=3(x+4 / 6)^{2}-10 / 3 \\
V:(-4 / 6,-10 / 3) \\
A: x=-2 / 3
\end{gathered}
$$

Writing Quadratic Equations 2 points

steps:

1. start w/ graphing form $y=a(x-h)^{2}+k$
2. put the vertex in for (h, k)
3. put $2 n d$ pt in for (x, y)
4. solve for a
5. write the equation in graphing form using "a" \& (h, k)

Write the eq. of the parabola w/ vertex (-2, -3) \& point (-4, -5)

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
&-5=a(-4+2)^{2}-3 \\
&-5=a(-2)^{2}-3 \quad\left(y=-\frac{1}{2}(x+2)^{2}-3\right. \\
&-5=4 a-3 \\
&+3 \\
& \frac{-2}{4}=\frac{49}{4} \\
& 9=-\frac{1}{2}
\end{aligned}
$$

Formula for vertical free fall:
$-\otimes h=-16 t^{2}+v_{o} t+h_{0}$
Write an equation to model the path of a ball if a baseball player throws it with an initial velocity of 85 $\mathrm{ft} / \mathrm{sec}$. from a height of 5.5 feet.
What is the maximum height the baseball will reach? How many seconds will it take to reach that height?

$$
\begin{aligned}
& h=-16 t^{2}+85 t+5.5 \\
& 118+t \quad 2.68 \mathrm{cc}
\end{aligned}
$$

