Step Functions

Objectives:

I can write and graph step function problem situations. I can analyze the graphs of step functions.

In 2004, Georgia had 6 income tax brackets. The tax rate on every dollar of income was:

- 1% for incomes more than $\$ 0$ and up to and including $\$ 750$
- 2% for incomes more than $\$ 750$ and up to and including $\$ 2250$
- 3% for incomes more than $\$ 2250$ and up to and including $\$ 3750$
- 4% for incomes more than $\$ 3750$ and up to and including $\$ 5250$
- 5% for incomes more than $\$ 5250$ and up to and including $\$ 7000$
$.0 \%$ for incomes more than $\$ 7000$
.06

1. Write a piecewise function $f(x)$ for the tax paid in Georgia for income x.

2. Analyze the linear piecewise function in the worked example.
a. Notice that the function is not continuous. At what x-value is there a break in the graph? Why do you think that break occurs?

3. Analyze the function you wrote to represent the tax brackets in Georgia from Question 1.
a. Would the lines that represent each piece of the function on the graph be connected or contain breaks? Explain
Breaks, changedequations
b. Describe the endpoints of the line representing each interval. Explain.

4. Describe the rate of change when:
a. $0 \leq x \leq 750$
$\frac{1}{100}$ slowly increasing
b. $750<x \leq 1000$
$\frac{2}{100}$ Faster than a but
5. Calculate the amount of tax paid on an income of:
a. $\$ 2250$ \# $\$ 45$ intaxes per month
b. $\$ 2251 \$ 67.53$ per month
c. $\$ 7000=\$ 350$

d. $\$ 7001=\$ 420$
6. Describe the method you used to calculate the amount of tax for year income

Problem 2: Taxi Fares

$\$ 1.20$ for each additional mile or part of a mile.

1. Define a piecewise function, $\underline{g}(\mathrm{x})$, for the cost of a taxi ride up to 5 miles.

$$
\text { Q }(x)= \begin{cases}\$ 1.20 & 0 \leq x \leq 1 \\ \$ 2.40 & 1<x \leq 2 \\ \$ 3.60 & 2<x \leq 3 \\ \$ 4.80 & 3<x \leq 4 \\ \$ 6.00 & 4<x<5 \\ \text { 2. What is the slope of each interval? Explain your reasoning. } \\ \text { Slope is } 0 \text { NOChange = horizontal } H \text { Mill }\end{cases}
$$

4. Describe the graph of the function as either increasing or decreasing.

Increasing
You have just graphed a step function. A step function is a piecewise function whose pieces are disjoint constant functions
5. Why do you think this function is called a step function?

Problem 3 Special Step Functions

The greatest integer function is a special kind of step function. The greatest integer function, also known as the floor function, $G(x)=\lfloor x\rfloor$ is defined as the greatest integer less than or equal to x.

1. Evaluate each using the greatest integer function.
a. $\lfloor 2\rfloor=2$
b. $\lfloor 0.17\rfloor=\underline{O}$
c. $\lfloor 2.34\rfloor=$ 2
d. $\lfloor-1.2\rfloor=-\mathbb{R}$
e. $\lfloor 2.99999\rfloor=\underline{2}$
f. $\lfloor-0.2\rfloor=-\rfloor$
2. Graph $G(x)=\lfloor x\rfloor$.

