Piecewise Function: A function whose definition changes depending on the value of the independent variable.

Recall: A function must pass the vertical line test (meaning two points cannot intersect a given vertical line at any point of the graph)

Example of what piecewise might look like:

Graph the piecewise function by (1) Evaluating the given endpoints from the intervals and (2) determine whether to graph each with an open circle, closed circle, or arrow.

$$
\begin{gathered}
-3+6=3 \\
3(-3)+4 \\
-9+4=-5 \\
3(1)+4 \\
3+4=7
\end{gathered}
$$

$2(1)+$
$\frac{1}{2}-\frac{6}{2}=\frac{-5}{2}$
$f(-2)=-\frac{2}{2}-3=-1-3=-4$
$f(6)=$
$f(1)=3$

$$
\begin{aligned}
& \text { Remember: } \\
& \text { slope }=m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

Equations of a line:
point slope

$$
\text { point-slope form: } y-\underbrace{}_{1}=\underset{m\left(x-x_{1}\right)}{ }
$$

$$
\text { slope-intercept form: } y=\underset{\substack{t \\ \text { slope }} \underset{y x}{m-i n t e r c e p t ~}}{\text { b }}
$$

Find the equation of the line given the graph/ points:
$(2,4)$ and $(6,-8)$

Write the equation for the piecewise function:

2. What is happening from time $=0 \mathrm{~h}$ until
time $=2 \mathrm{~h}$? What is the slope of this line?
5. What is happening from time=3h to time=6h? What is the slope of this line?
6. Write and equation for this graph. Be sure to include the domain!!!
3. What is happening from time $=2 \mathrm{~h}$ until
time $=3 \mathrm{~h}$? What is the slope of this line?

