3-Dft ${ }^{3}$

13-3 Volumes of spheres, cones and cylinders.

Objective: I can find the volume of spheres, cones and cylinders.

Now fold this 2 dimensional piece of paper into a 3 dimensional cylinder.

Find the volume of this rectangle transformed into 3 dimensions.

Hint: Find the BxH for the new figure.

Discovering the Volume of a Cylinder

Take a piece of paper in your hand.

How do you calculate the area of this rectangle? $l \cdot h$

Volume of a cylinder basele, height

Base \times Height $=\left(\pi r^{2}\right) \boldsymbol{h}$

Think of it this way. The space taken up by the cylinder is the area of a circle stacked on top of each other for as tall as the height is.

Remember: Cylinders may be oblique. Height is always perpendicular to the base.

Right Cylinder

Oblique Cylinder

You try

$$
V=141.4 \mathrm{in}^{3}
$$

1.
2.

10 yd

$r=2$

Volume of a Cone
Remember the volume of a prism vs. the volume of a pyramid.

What do you conjecture the volume of a cone is (based on the volume of a cylinder)?

$$
\frac{1}{3} b h=\frac{1}{3} \pi r^{2} h
$$

*Check conjecture by seeing how many cones of water will fill the cylinder!

Find the volume of the cone. $\frac{1}{3} \pi r^{2} h \rightarrow$ height

You Try

Find the volume of the cone.
$V=\frac{1}{3} \pi r^{2} h$

$V=\frac{1}{3} \pi\left(4^{2}\right) 9$
$150.8 \mathrm{~km}^{3}$

Find the volume of the sphere.

You Try

Volume of a sphere: $\quad V=\frac{4}{3} \pi r_{\text {radius }}^{3}$

Check for understanding.
Find the volume of each figure.

