13.1: Equations of Circles

1. Circle - the set of all points in a plane that are equidistant from a given point in the plane, called the Center.
2. Radius - Distance from center to outside 3. Diameter - Distance from side to side through center (iwis ethe radius)

4 chord

6. Midpoint Formula:

7. Distance Formula:

$$
\begin{aligned}
& \left(\sqrt{\left.\left(x_{1}-x_{2}\right)^{2}+\left(y_{-}-y_{2}\right)^{2}\right)} \neq d\right) \\
& \left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}=d^{2}
\end{aligned}
$$

8. Standard form of the equation of a circle:
$(x-h)^{2}+(y-k)^{2}=r^{2}$ where $(h, k)=$ center and $r=$ radius
Everyone is lying
9. Write an equation of a circle in standard form with a center of (4) (-3) and a radius of (3) units. Graph.

$$
(x-4)^{2}+(y+3)^{2}=9
$$

10. Write an equation of a circle in standard form if the endpoints of the diameter are at ((-4) 1) and (4), (-5)) $r=4$

$$
\begin{array}{r}
\left(\frac{-4+4}{2},\right. \\
\left.\frac{1+-5}{2}\right) \rightarrow(0,-2) \\
x^{2}+(y+2)^{2}=16
\end{array}
$$

11. Find the center and radius of the circle with the given equation. Then graph the circle.

$$
\begin{aligned}
& (x-3)^{2}+y^{2}=4 \\
& \text { center: }(3,0) \\
& \text { radius: } 2
\end{aligned}
$$

12. To graph an equation not in standard form you must complete the square on both the x and y values.
ex) Find the center and radius of the circle with equation:
$\left.x^{2}+y^{2}-4 x+8 y-5\right)=0 \quad \frac{8}{2}(4)^{2}=16$
$x^{2}-4 x+\frac{4}{2}+y^{2}+8 y+16=5+4+16$
$\frac{-4}{2}(-2)^{2} \quad(x-2)^{2}+(y+4)^{2}=25$

$$
c:(2,-4) r: 5
$$

ex) Find the center and radius of the circle with equation:

$$
\begin{aligned}
& x^{2}+y^{2}+6 x-7=0 \\
& x^{2}+6 x+\frac{6}{2}+y^{2}=7+9 \\
& (x+3)^{2}+y^{2}=16
\end{aligned}
$$

$(x-h)^{2}+(y-k)^{2}=r^{2}$
Give the equation of the following circle:
$r: 4 c:(0,0)$
$x^{2}+y^{2}=16$

