11-2 Inverses

Objective: I can find the inverse of a linear and cubic function.
Objective: I can verify inverses using composition.
Objective: I can explain the identity function and what it means for a function to be one-to-one.

Inverse of a Relation

The inverse of a relation consisting of the ordered pairs (x, y)
is the set of all ordered pairs (y, x).
Notation:
$f^{-1}(x)$
Represents the inverse of the function $f(X)$

Find the inverse of each function. State whether the function is one-to-one.
A function is one-to-one, if there is exactly one x for every y value (in addition to there being exactly one y for every x).

If the inverse of a function is a function, then the function is one-to-one.
Example of a function that is one-to-one. Example of a function that is NOT one-to-one.

a. $\{(5,2),(4,3),(3,4),(2,5)\}$
$\{(2,5),(3,4),(4,3),(3,2)\}$ one-to-one
c. $\{(1,2),(4,3),(2,-1),(5,3)\}$ $\{(2,1)(3,4),(-1,2)(3,2)\}$

Horizontal-Line Test

The inverse of a function is a function if and only if every horizontal line intersects the graph of the given function (passed the vertical-line test) at no more than one point.
function 1 个)/
not one-to ord A

function inverse. r^{t}
anvers: not function one-fo-one If a function passes both the vertical line test AND the horizontal line test, then it is a one-to-one function.

Determine whether the function is one-to-one.

Inverse Functions

Function: $f(x)=2 x+3$

Inverse Function: $\quad f^{-1}(y)=\frac{y-3}{2}$

$f(x)=x+2$
To find the inverse equation of a function

1. Change $f(x)$ to $y . \quad y=x+2$
2. Interchange x and $y x_{-2}=y+2$
3. Solve for $y \quad x-2=y$
4. Change new y to $f^{1}(x) f^{-1}(\mathbf{x})=\mathrm{x}-2$

Finding Inverses

1. $f(x)=3 x+4$
2. $\begin{gathered}f(x)=\frac{x+1}{2} \\ y=\frac{x+1}{2} \\ 2 x=\left(\frac{y+1}{2}\right)^{2} \\ 2 x=y+1 \\ -1 \\ 2 x-1=y \\ f^{-1}(x)=2 x-1\end{gathered}$

Find the inverse of each function.

1. $h(x)=2 x^{3}+3$
$y=2 x^{3}+3 \quad f^{-1}(x)=\sqrt[3]{\frac{x-3}{2}}$
$x=2 y^{3} \pm 3$
-3
$\frac{x-3}{2}=2 y^{3}$
$\sqrt[3]{\frac{x-3}{2}} \sqrt[3]{y^{3}}$
2. $g(x)=\sqrt[3]{x}-3$

The graph of a function and its inverse is symmetrical with respect to the $y=x$ line.

1. $f(x)=12 x-1$
$y=12 x-1$
$\begin{aligned} & x=12 y-1 \\ & \frac{x+1}{12}=\frac{12 y}{12}\end{aligned} \quad \frac{x+1}{12}=4 \quad f^{-1}(x)=\frac{x+1}{12}$
2. $f(x)=x^{3}-6 \sqrt[3]{x+0^{3}} \sqrt[3]{y^{3}}$
$\begin{gathered}x=y^{3}-6 \\ +6\end{gathered} \quad f^{-11}(x)=\sqrt[3]{x+6}$

Graph the inverse of the graph. (Use $y=x$ to find inverse points)

Inverses give you back the original value

$$
\begin{array}{ll}
f(x)=x^{2} & f^{-1}(f(x))=\sqrt{x} \\
g(x)=\sqrt{x} & f\left(f^{-1}(x)\right)=(x
\end{array}
$$

Examples

2. $f(x)=2 x+3$
if $\mathrm{x}=4$, then $\mathrm{f}(4)=2(4)+3=11$
$f^{-1}(y)=\frac{y-3}{2} \quad f^{-1}(11)=\frac{11-3}{2}=\frac{8}{2}=4$

We can verify that two functions are inverses of each other by determining if the composition of the two functions are both equal to x.

$$
\begin{array}{ll}
f \circ g=x & g \circ f=x \\
f \circ f^{-1}=x & f^{-1} \circ f=x
\end{array}
$$

Use composition to determine if the following functions are inverses of each other.

$$
\begin{array}{ll}
\text { a) } f(x)=5 x+1 & \text { b) } \left.f(x)=\frac{x-1}{4}\right) \\
g(x)=\left(\frac{x-1}{5}\right. & g(x)=4 x+1 \\
f(g(x))=5\left(\frac{x-1}{5}\right)+1=x-1+1=x & f(g(x))=4 x+4-1=x \\
g(f(x))=\frac{5 x+1-1}{5}=\frac{5 x}{5}=x & g(f(x))=4\left(\frac{x-1}{4}+1\right. \\
x-1+1=x
\end{array}
$$

Use composition to determine if the following functions are inverses of each other.
a) $f(x)=x^{3}-6$
$g(x)=\sqrt[3]{x+6}$
$f(g(x))=(\sqrt[3]{x+0})^{3}-6$
b) $f(x)=3 x^{3}+9$ $g(x)=\frac{\sqrt[3]{3 x-27}}{3}$
(If it comes up....)
$f(x)=x^{2}$

