11.1 Evaluating and Composition of Functions

Objective: I can evaluate functions for a given value.
Objective: I can create new functions using composition.

$$
\begin{array}{lc}
& \text { Evaluate } \\
f(x)=3 x-7 \text { for } x=4 & \downarrow \\
f(4)=3(4)-7 & f(4)=5 \\
f(4)=12-7 & \\
g(t)=5-t \text { fort } t=-2 & \\
g(-2)=5-(-2) & g(-2)=7 \\
g(-2)=5+2 & \\
h(x)=\frac{x}{2}+3 \text { for } x=6 \\
h(6)=\frac{6}{2}+3 & h(6)=6 \\
h(6)=3+3 &
\end{array}
$$

What if you plug in an expression instead of a number?

$$
\begin{aligned}
& \text { Example: Evaluate } f(x)=2 x-8 \text { for } t+2 \\
& f(t+2)=2(t+2)-8 \\
& f(t+2)=2 t+4-8 \\
& f(t+2)=2 t-4
\end{aligned}
$$

Composition of Functions

When you plug a function into a second function, you are doing composition of functions.

$$
\begin{aligned}
& f(g(x))=(f \circ g)(x) \text { Plug } g(x) \text { into } f(x) \\
& g(f(x))=(g \circ f)(x) \text { Plug } f(x) \text { into } g(x)
\end{aligned}
$$

ALWAYS work from the INSIDE to the OUTSIDE!

Example: Find $(f \circ g)(x)$ and $(g \circ f)(x)$.

$$
\begin{gathered}
\left.f(x)=\frac{x}{3}-1\right)=3(x)=3 x+6 \\
(f \circ g)(x)=\frac{3 x+6}{3}-\frac{3}{3}=\frac{3 x+6}{3}-\frac{3}{3}=\frac{3 x+3}{3}=x+1 \\
(g \circ f)(x)=3\left(\frac{x+2}{3}-1\right)+6=\frac{3 x}{x}-3+6=x+3
\end{gathered}
$$

Evaluate.
$f(x)=x^{2}-1 \quad g(x)=2 x$
$f(g(2))=(2 x)^{2}-1=(2.2)^{2}-1=4^{2}-1-16-1=15$
$(f \circ g)(-1)=(2 x)^{2}-1=(2 \cdot-1)^{2}-1=(-2)^{2}-1=4-1=3$ $g(f(-3))=2\left(x^{2}-1\right)=2\left((-3)^{2}-1\right)=2(9-1)=2(a)=16$ $(g \circ f)(0)=2\left(x^{2}-1\right)=2\left(0^{2}-1\right)=2(0-1)=2(-1)=-2$

