Transformations:

- helps us to understand the connections between the algebraic equation and its graph
- rigid - same shape and size (translation, reflection, rotation)
- non-rigid - distorts the shape by stretching and shrinking(dilation)

Domain changes Range changes

$$
\begin{aligned}
& \text { Transformation Equation } \\
& y= \pm \Theta f(\pm \#(x \pm \Delta)) \pm \square
\end{aligned}
$$

- order matters with combinations of transformations
- when using a table - multi. \& divide first, add \& subtract second

Domain changes
Range changes

$$
y= \pm \Theta \underbrace{(-3(x+2))^{2}}_{(-3 x-6)^{(\pm \#(x \pm \Delta))} \pm \square}
$$

\pm if (-) reflection over x-axis
(range Δ)
Θ vertical expansion or compression (range Δ)
$\Theta>1$ expansion
$\Theta<1$ compression
$\quad \pm$ if (-) reflection over y-axis (domain Δ)
\# horizontal expansion or compression (domain Δ)
$0<\#<1$ expansion
\#>1 compression
$\Delta \quad$ translation left or right
(domain Δ)
(+) left (-) right

- translation up or down
(range Δ)
$(+)$ up (-) down

Information to remember about transformations....

x's lie

any change to the domain (x's) is opposite of what appears in the equation

- translations

$$
\begin{aligned}
& y=\sqrt{x}+5 \\
& 4 p^{5} \\
& 1 \\
& y= \\
& \underset{r i g n t}{x}-4 \\
& \begin{array}{l}
\underbrace{y=(x+3)^{2}}_{-3} \\
y=\sqrt{x+7}
\end{array} \\
& \text { left } 7 \\
& y=\frac{1}{x}+3 \\
& y=x^{2}-2
\end{aligned}
$$

- reflections
across the y-axis:
$y=f(-x)$

$$
\begin{array}{cc}
y=\sqrt{-x} & y=-|x| \\
y & x \\
y=-\frac{1}{x} & y=(-x)^{3} \\
y=2_{y}^{-x} & y=\frac{\bar{x}}{} \log _{2} x
\end{array}
$$

- dilations
- vertically

$$
y=\# f(x)
$$

- horizontally

$$
y=f(\# x)
$$

$$
\begin{array}{ll}
y=\frac{1}{2}(x)^{3} & y=\sqrt{2 x} \\
V \text {, shrink } \frac{1}{2} & H, \text { shrink, } \frac{1}{2} \\
y=2^{x} \\
y=2^{3 x} & y=\left|\frac{x}{4}\right| \\
\mid y, \text { she ink, } \frac{1}{3} & \text { riv H, grow, } 4 \\
y=\frac{3}{x} \text { vert, Strath } & y=3 \log _{2} x \\
\text { Stretch } 3
\end{array}
$$

Describe the transfromations:

$$
y=2^{x}
$$

1. $y=\frac{-\sqrt{x-4}}{3}$
reflects: x-axis vertical shrink: $\frac{1}{3}$ shift Right 4
2. $y=\frac{1}{x-4}+5$
shifts up 5
Right 4
3. $y=2 \cdot 2^{x+3}$
vert. 2 stretch
nshift -3

$$
y=x^{2}
$$

4.

$$
\begin{gathered}
y=(5-x)^{2} \\
y=(-x+5)^{2} \\
y=(-(x-5))^{2} \\
\text { right } \\
\text { reflextover }
\end{gathered}
$$

Write an equation to represent the transformed function:
shift Left 3 reflect X
reflect y
$y=-\sqrt{-(x+3)}$

Write an equation to represent the transformed function:

Find the equation of the reflection over the x -axis:

$$
y=3|x-7|+4
$$

