Def: 2 relations f & g are inverses iff both of their compositions are the identity function (y=x)

this means
$$f(g(x))=x & g(f(x))=x$$

- it does not mean they equal the same thing - they must equal x!!

Notation:
$$f^{-1}(x)$$
: inverse of $f(x)$

(not an exponent, f is the name of a function not a variable!!)

Use the definition of inverses to show that f(x) = 6 - 2x

$$g(x) = \frac{6-x}{2}$$
 are inverses:

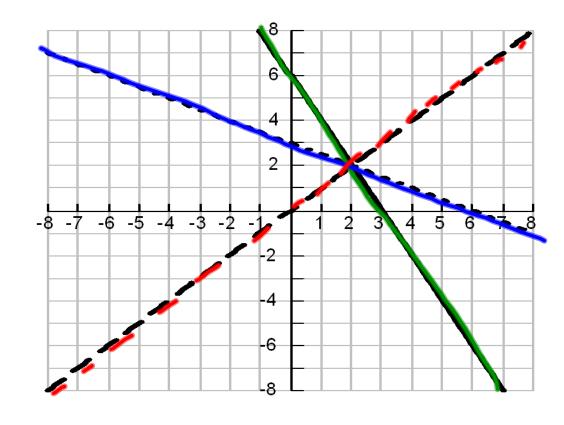
$$f(g(x)) = f(b-x) = b-2(b-x) = b-b+x$$

$$g(f(x)) = g(b-2x) = b-(b-2x) = b-(b-2x) = b-b+x$$

Inverses - graphically (card)

Inverse relations are reflections of each other over the line y = x (identity function)

mirror images over y = x


so if g(x) and f(x) are inverses then every point (a,b) if f(x) will be reflected onto its mirror image (b,a) in g(x) and vise versa

Property of inverse relations: Suppose $f \& f^{-1}$ are inverse relations, then f(a) = b iff $f^{-1}(b) = a$

back

Graph to show f(x) = 6 - 2x and $g(x) = \frac{6 - x}{2}$ are inverses

Fold at y = x, graphs will lie on top of each other if they are inverses or Look at pts:

f
$$(1,4)$$
 $(3,0)$ $(4,-2)$ g $(4,1)$ $(0,3)$ $(-2,4)$

Finding inverses graphically

2. Praw in y= X 2. reflect f over y=X

Finding an Inverse Algebraically (card)

Steps:

- 1. replace f(x) or relation name w/ y if not in that form
- 2. switch the x & y in the eq. (just x & y not signs, coefficients, or exponents)
- 3. Solve for y.
- 4. replace y with relation name (f or g)

back

find the inverse

$$f(x) = x^{2} + 1$$

$$y = x^{2} + 1$$

$$x = y^{2} + 1$$

$$y = y^{2}$$

$$g(x) = \frac{x+1}{2x+3}$$

$$y = \frac{x+1}{2x+3}$$

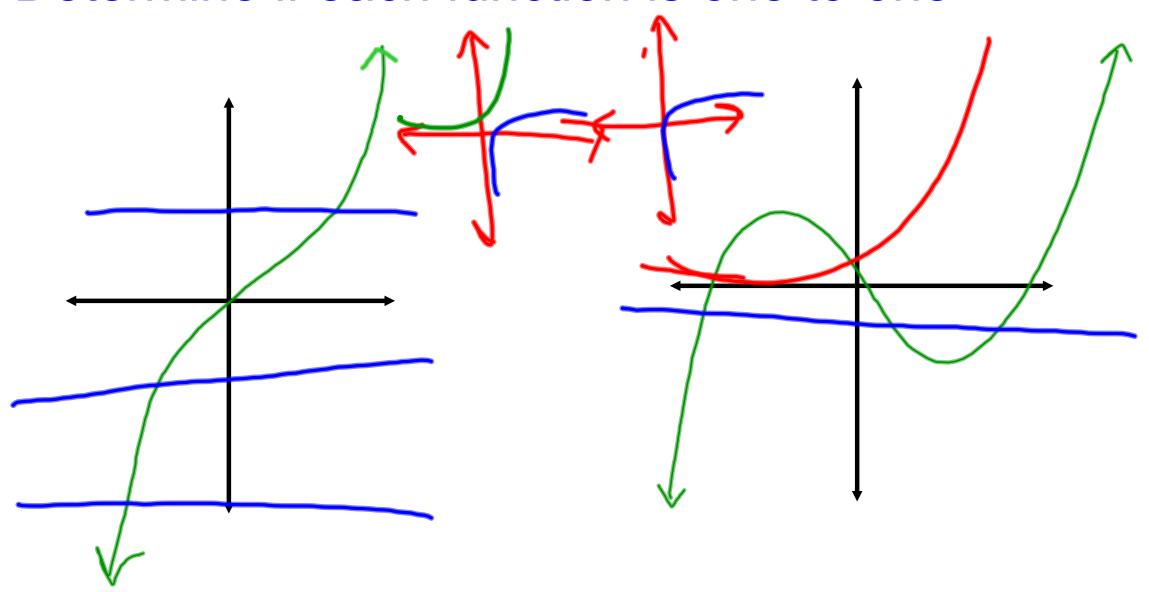
$$(2y+3)X = \frac{y+1}{2y+3}$$

$$(2y+3)X = \frac{y+1}{2x+3}$$

$$(2y$$

Is the inverse a function???? How can I tell?

One-to-One (card)


- a function whose inverse is also a function

a function such that each x is paired with only one y and each y is paired with only one x

must pass the horizontal line test to be one to one

(back of one to one card)

Determine if each function is one to one

$$f(x) = \sqrt{2x - 3} \quad \begin{cases} 2x - 3 \ge 0 \\ 2x = 3 \end{cases}$$

Find the inverse and the domain of f including any

inherited restrictions

D:
$$[\frac{3}{2}, \infty)$$
 R: $[0, \infty)$
 $|0, \infty|$
 $|0, \infty|$