1.4 Building Functions from Functions

We can find new functions by building them from other functions using operations we are already familiar with.

Operations on Functions

Two functions f and g have intersecting domains, then for all values of x in that intersection...

Sum: $(f+g)(x)=f(x)+g(x)$
Difference: $(f-g)(x)=f(x)-g(x)$

Product: $(f g)(x)=f(x) g(x)$
Quotient: $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} g(x) \neq 0$
REMEMBER: The domain of the new function is all the x-values that are in BOTH the domain of f and the domain of g . (take special notice of zeros in the denominator when dividing)
$f(x)=x$
Domain: $(-\infty, \infty)$
Which values are in both domains $[-1, \infty)$
$(f g)(x)=f(x) g(x) \quad\left(x^{2}\right)(\sqrt{x+1})$
$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, g(x) \neq 0 \frac{x^{2}}{\sqrt{x+1}}$
$(g g)(x)=g(x) g(x) \times+1$
$g(x)=\sqrt{x+1}$
Domain: $[-1, \infty)$

D: $[-1, \infty)$
D: $[-1, \infty)$
$D:[-1, \infty)$
$D:(-1 \infty)$
$D:[-1,00)$

Composition of Functions - defined

 suppose $f \& g$ are functions such that the range of g is a subset of the domain of f, then the composite function that we write $f \circ g$ can be described by the following equation:$(f \circ g)(x)=f(g(x)) \quad$ read "f of g "
work from the inside out. Compositions can be done with discrete and continuous functions.

Domain of Compositions

The domain of $\quad(f \circ g)(x)$ consists of all x-values of g that map to $g(x)$-values in the domain of f
 x gave us $g(x)$ values
in the domain of f ?

Discrete functions:

Given:

$\mathrm{f}=\{(1,3)(2,7)(3,-2)\}$
$g=\{(7,11)(3,-6)(-2,-3)(5,1)\}$

1. Find: $g \circ f(x)=g(f(x))$
2. Find: $f \circ g(x)=f(g(x))$

Continuous Functions:

$f(x)=x^{2}$

$$
g(x)=x-3
$$

Find: $(f \circ g)(3.5)$
$3.5 \underset{\square}{\overrightarrow{\square-3}} \cdot 5 \xrightarrow[x^{2} \frac{f}{\longrightarrow}]{x^{2}} .25$
Find: $(f \circ g)(c)$

Finding the domain of a composition $f(x)=\frac{x^{2}-1}{} \quad g(x)=\sqrt{x}$

$(f \circ g)(x) f(g(x))=(\sqrt{x})^{2}-1=x-1$
$D:[0, \infty)$
$(g \circ f)(x) g(f(x))=\sqrt{x^{2}-1}$
$D:(-\infty,-1] \cup[1, \infty)$

1. What is the domain of the first function?
2. Find the domain restrictions of the new function
3. Put them together

$f(x)=x^{2}-4$

 $g(x)=\sqrt{x-3}$

 $g(x)=\sqrt{x-3}$}

Find $\mathrm{f}(\mathrm{g}(\mathrm{x})), \mathrm{g}(\mathrm{f}(\mathrm{x}))$ and the domain of the composition.

Decomposition

 given $h(x)$ find functions f and g such that $h(x)=f(g(x))$$$
h(x)=(x+1)^{2}-3(x+1)+4
$$

$$
h(x)=\sqrt{x^{3}+1}
$$

$f(g(x))=\left(x^{2}+3\right)^{2}$
given the composition - find $f(x)$ and $g(x)$
$h(x)=\sqrt{x^{3}+1}$ given $h(x)$ find $f(x)$ and $g(x)$ so that $h(x)=f(g(x))$

