Parent Functions

Domain
Range
Continuous
Increasing
Decreasing
Constant
Left End
Right End
Symmetry
x-intercepts
y-intercepts
VA
HA
Bounded
Extrema

Constant

$$
\begin{gathered}
y=k \\
f(x)=k
\end{gathered}
$$

where k is R

* a horizontal line

Domain
Range
Continuous
Increasing
Decreasing
Constant
Left End
Right End
Symmetry
x-intercepts
y-intercepts
VA
HA
Bounded
Extrema

Identity (Linear)

$f(x)=x$

or

$$
y=x
$$

Absolute Value

$$
f(x)=|x|
$$

Domain $(-\infty, \infty)$
Range $[0, \infty)$
Continuous yes Increasing $[0, \infty)$
Decreasing $(-\infty, 0]$
Constant
Left End to (∞
Right End to 10
Symmetry EN en
x-intercepts $(0,0)$
y-intercepts (0,0)
VA
HA -
Bounded Bebow
Extrema

Power Functions

2 example parents: $f(x)=x^{2}$ quadratic $f(x)=x^{3} \quad$ cubic
other examples:

$$
\begin{aligned}
& y=x^{4} \\
& y=x^{6}
\end{aligned}
$$

$$
y=x^{5}
$$

$$
y=x^{7}
$$

$$
y=x^{9}
$$

Even Powered Parent
 Quadratic

$$
f(x)=x^{2}
$$

Domain $(-\infty, \infty)$
Range $[0, \infty)$
Continuous yes
Increasing $[0, \infty)$
Decreasing $\left(-\varphi, O^{\circ}\right)$
Constant
Left End ∞^{∞}
Symmetry QNen
x-intercepts $(0,0)$
y-intercepts $(0,0)$
VA
$\mathrm{HA} \overparen{\text { Bunded Bellow }} \mathrm{C}$

Odd Powered Parent

Cubic

$$
f(x)=x^{3}
$$

Domain $(-\infty, \infty)$
Range $(-\infty, \infty)$
Continuous yes Increasing $(-\infty, \infty)$
Decreasing
Constant
Left End - ∞
Right End ∞ Symmetry odd. x-intercepts $(0,0)$ V-intercepts $(6,6)$
HA
Bounded
Extrema \qquad

Radical Functions

Even Index
$f(x)=\sqrt[4]{x}$
$f(x)=\sqrt[6]{x}$

Odd Index
$f(x)=\sqrt[5]{x}$
$f(x)=\sqrt[7]{x}$

Square Root

$$
f(x)=\sqrt{x}
$$

Domain $[0, \infty)$ Range $[0, \infty)$ Continuous yes Increasing $[0, \infty)$
Decreasing
Constant
Left End ends@ 0
Right End ∞
Symmetry
x-intercepts $(0,0)$
y-intercepts $\left(0,0^{\circ}\right)$
VA
HA
Bounded Be IOW Extrema (0,0) Min

Cube Root

$$
f(x)=\sqrt[3]{x}
$$

Domain
Range
Continuous
Increasing
Decreasing
Constant
Left End
Right End
Symmetry
x-intercepts
y-intercepts
VA
HA
Bounded
Extrema

Rational Functions

the ratio of 2 polynomial functions

$$
y=\frac{1}{x} \quad y=\frac{1}{x^{2}} \quad \mathbf{X} \neq \mathbf{0}
$$

$$
y=\frac{1}{x^{3}}
$$

$$
y=\frac{1}{x^{4}}
$$

$$
y=\frac{1}{x^{5}}
$$

$$
y=\frac{1}{x^{6}}
$$

Odd Power in Den.

$$
f(x)=\frac{1}{x} \quad x \neq 0
$$

Domain $(-\infty, 0) \cup(0, \infty)$
Range $(-\infty, 0) \cup(0, \infty)$
Continuous Continuous Not Coritinuous Increasing $\underset{\text { Decreasing }-\infty, 0) \cup(0, \infty)}{ }$
Constant
Left End - M
Right End O
Symmetry odd.
x-intercepts
y-intercepts -
va $x=8$
HA $y=0$
Bounded
Extrema

Even Power in Den.
 $$
f(x)=\frac{1}{x^{2}}
$$
 $$
x \neq 0
$$

Domain
Range
Continuous
Increasing
Decreasing
Constant
Left End
Right End
Symmetry
x-intercepts
y-intercepts
VA
HA
Bounded
Extrema

Exponential

$$
f(x)=e^{x}
$$

Logarithmic

$$
f(x)=\ln x
$$

Step-Functions

Greatest Integer - one of several step functions
(converts a real number x into the largest integer that is less than or equal to x)
$f(x)=\lfloor x\rfloor f(x)=\operatorname{int}(x)$

$$
f\left(\frac{1}{2}\right)=0
$$

Domain $(-\infty, \infty)$ Range Integers Continuous Increasing onthesteps Decreasing Constant betw cen yumps Left End-1 Right End \mathcal{O} Symmetry odd. $\underset{\substack{\text { Symmetry } \\ \text { x-intercepts } \\ \text { y-intercepts }}}{ }([0,1), 0)$ VA HA Bounded $\underset{\sim}{\sim}$ Extrema -

Logistic

$$
f(x)=\frac{1}{1+e^{-x}}
$$

Sine

$$
f(x)=\sin x
$$

Domain $(-\infty, \infty)$
Range $[-1,1]$
Continuous yes
Iñcreasing
Decreasing
Constant
Left End
Right End
Symmetry odd
x-intercepts
y-intercepts (0).
VA
(0)
HA
Bounded abovect below
Extrema

Cosine

$$
f(x)=\cos x
$$

Domain $(-\infty, \infty)$
Range $[-1,1]$
Continuous

Continuous
Increasing
Decreasing
Constant
Left End
Right End
symmetry ON UN
x-intercepts
y-intercepts
VA
HA
Bounded
Extrema

Piecewise Functions

certain pieces of the function have specific behavior frequently: intervals (parts) of the domain are associated with different functions (related to continuity)

$$
f(x)= \begin{cases}x+1 & \text { if } x \leq 0 \\ x & \text { if } x>0\end{cases}
$$

$$
f(x)= \begin{cases}x+1 & \text { if } x \leq 0 \\ x & \text { if } x>0\end{cases}
$$

Characteristics will vary for each piecewise function

$$
f(x)= \begin{cases}\frac{x^{2}}{\sqrt{x}} & \text { if } x \leq 0 \\ \underline{\underline{x}} x>0\end{cases}
$$

Characteristics will vary for each piecewise function

