1-4 Rational Exponents

Rational exponent Calc task
$1,4,9,16,25,36$

$$
a^{\left(\frac{1}{2}\right)}=
$$

$1,8,27,64,125,216$

$$
a^{\left(\frac{1}{3}\right)}=
$$

$$
a^{\left(\frac{3}{4}\right)}=
$$

$$
a^{\left(\frac{m}{n}\right)}=
$$

Fractional exponent

$$
a^{\frac{1}{n}}=\sqrt[n]{a}
$$

n is an integer bigger then or equal to 2
$a^{\frac{1}{3}}=\sqrt[3]{a}$

Write each of the following as a radical and simplify, if possible.

$$
\frac{100^{\frac{1}{2}}}{\sqrt{100}}=10-\sqrt{100^{\frac{1}{2}}}=10
$$

You try
$\sqrt[12]{r} \quad \sqrt[5]{d}$

Write each of the following as a radical and simplify, if possible.
$\sqrt{25^{2}}$

You try	
$27^{\frac{2}{3}}$	$16^{\frac{3}{2}}$
$-25^{\frac{5}{2}}$	$-16^{\frac{3}{4}}$

Rewrite in exponent form
$27^{\frac{2}{3}}$
$16^{\frac{3}{2}}$
$-25^{\frac{5}{2}}$
$-16^{\frac{3}{4}}$

$$
\sqrt[3]{x^{2}} x^{\frac{2}{3}}
$$

$$
\left(\sqrt[4]{r^{2}}\right)^{2} r^{\frac{2}{4}}
$$

You try

$$
\begin{array}{r}
\sqrt[8]{a^{3}} a^{\frac{3}{8}} \\
(\sqrt[3]{h})^{9} \\
h^{\frac{9}{3}}=h^{3}
\end{array}
$$

$$
\left.d^{-\frac{m}{n}}=\frac{1}{a^{\frac{m}{n}}}\right) \text { and }\left(\frac{1}{a^{-\frac{m}{n}}}=a^{\frac{m}{n}}\right.
$$

$\frac{m}{n}$ is a rational number, and a is a nonzero real number

Write each of the following as a radical and simplify, if possible.

$$
\begin{aligned}
& \left(-\frac{1}{3}\right) \frac{1}{x^{1 / 3}} \\
& 36^{-\frac{1}{2}} \frac{1}{36^{1 / 2}}=\frac{1}{\sqrt{36}}=\frac{1}{6}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Just a reminder. } \\
& a^{0}=1 \quad \text { if } a \neq 0 \\
& a^{-n}=\frac{1}{a^{n}} \quad \text { orponent Rules } \quad \frac{1}{a^{-n}}=a^{n} \quad \text { if } a \neq 0 \\
& a^{m} \cdot a^{n}=a^{m+n} \\
& \frac{a^{m}}{a^{n}}=a^{m-n} \quad \text { if } a \neq 0 \\
& \left(a^{m}\right)^{n}=a^{m \cdot n} \\
& (a \cdot b)^{n}=a^{n} \cdot b^{n} \\
& \left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \quad \text { if } b \neq 0 \\
& \left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n} \quad \text { if } a \neq 0, b \neq 0
\end{aligned}
$$

After you simplify you should have:

- Only positive exponents.
- Each base only occurring once.
- Have no parentheses in the expression.
- No powers written to powers.

Simplify using properties of exponents. Leave answers with rational exponents

$$
\begin{aligned}
& x^{\frac{1}{2}} \cdot x^{\frac{1}{3}}=x^{\frac{1}{2}+\frac{1}{3}}=x^{\frac{3}{6}+\frac{2}{6}}=x^{5 / 6} \\
& \frac{x^{\frac{1}{3}}}{x^{\frac{5}{3}}} x^{\frac{1}{3}-\frac{5}{3}}=x^{-\frac{4}{3} \cdot \frac{1}{x^{4} / 3}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { You Try } \\
& \boldsymbol{r}^{\frac{3}{4}} \cdot \boldsymbol{r}^{\frac{1}{6}} \quad 3 \cdot \frac{3}{r^{3 \cdot 4}}+\frac{1}{6} \cdot 2 \cdot 2 \\
& \underbrace{\frac{9}{12}+\frac{2}{12}}=r^{\frac{11}{12}} \\
& x^{\frac{2}{3}} x^{\frac{5}{3}} x^{\frac{2}{3}}-\frac{1}{5} \cdot 3
\end{aligned}
$$

Simplify each of the following:

$$
\left(x^{\frac{2}{5}}\right)^{\frac{5}{4}}=x^{\frac{10}{20}}=x^{\frac{1}{2}}\left(x^{\frac{1}{2}} \cdot y^{\frac{2}{3}} x^{\frac{3}{2}} x^{\frac{3}{4}} y^{\frac{6}{6}}=x^{\frac{3}{4}} y\right.
$$

Simplify the following:

$16^{-\frac{3}{2}} x^{\frac{12}{2}} y^{-\frac{18}{2}}$

Use rational exponents to simplify the radicals.

$$
\frac{\sqrt{x}}{\sqrt[3]{x^{2}}} \quad \sqrt{\sqrt[3]{z}}
$$

