Adding, Subtracting, and Multiplying Radical expressions
Product Property of Radicals
If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers, and $n \geq 2$ is an integer, then

$$
\sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a b}
$$

We can prove this using rational exponents.

Note:

$$
\sqrt{a+b} \neq \sqrt{a}+\sqrt{b}
$$

Simplify

$$
\sqrt{5} \cdot \sqrt{3}=\sqrt{15}
$$

$$
x y
$$

$$
\sqrt[3]{2} \cdot \sqrt[3]{13}=\sqrt[\frac{1}{2}]{26} \quad \sqrt{4}+\sqrt{36}=\sqrt{40}
$$

$2+6=8$

Multiply

$$
\sqrt[5]{6 c} \cdot \sqrt[5]{7 c^{2}}=\sqrt[5]{42 c^{3}}
$$

You try

$$
\sqrt{11} \cdot \sqrt{7}=\sqrt{77} \quad \sqrt[4]{6} \cdot \sqrt[4]{7} \cdot \sqrt[4]{42}
$$

$$
\sqrt[7]{5 p} \cdot \sqrt[7]{4 p^{3}} \sqrt[7]{20 p^{4}}
$$

Multiply and Simplify Aocumading
equ｜rim

You try

$$
\sqrt{6} \cdot \sqrt{8}
$$

$$
4 \sqrt[3]{8 a^{2} b^{5}} \cdot \sqrt[3]{6 a^{2} b^{4}}
$$

$$
\begin{aligned}
& \sqrt{3} \cdot \sqrt{15} \cdot \sqrt{45} \quad 3 \sqrt[3]{4 x} \cdot \sqrt[3]{2 x^{4}} \\
& 2 \sqrt[3]{8} \cdot \sqrt[3]{8} x^{5} \cdot 32 \cdot \sqrt[3]{x^{2}} \\
& \sqrt[4]{27 a^{2} b^{5}} \cdot \sqrt[4]{6 a^{3} b^{6}} \\
& \text { T } \sqrt[4]{1 l^{1} 2^{a^{5}} b^{\prime \prime}} \\
& 3 a \mid b_{1} \sqrt[4]{2 a b^{3}} \\
& \text { 领品迫氺 }
\end{aligned}
$$

What is inside radical DOES NOT Add the following CHIANGE (+ $\hbar-)$

$$
\begin{aligned}
& 5 \sqrt{2 x}+9 \sqrt{2 x}=14 \sqrt{2 x} \\
& 3 \sqrt[3]{10}+7 \sqrt[3]{10}-5 \sqrt[3]{10}=5 \sqrt[3]{10}
\end{aligned}
$$

You Try

$$
9 \sqrt{13 y}+4 \sqrt{13 y} 13 \sqrt{13 y}
$$

$$
\sqrt[4]{5}+9 \sqrt[4]{5}-3 \sqrt[4]{5}=7 \sqrt[4]{5}
$$

Add or subtract as indicated.

$$
\begin{aligned}
& 3 \sqrt{12}+7 \sqrt{3} \\
& \frac{1}{4} 3 \\
& 6 \sqrt{3} \times 2 \sqrt{3}=13 \sqrt{3} \\
& 6 \sqrt{3}+7 \sqrt{3}
\end{aligned}
$$

Add or subtract as indicated.

$$
\begin{aligned}
& 3 x \sqrt{20 x}-7 \sqrt{5 x^{3}} \\
& \uparrow{ }^{4} 5 \\
& 6^{4} \times \\
& 6 x \sqrt{5 x}-7 x \sqrt{5 x}=-x \sqrt{5 x}
\end{aligned}
$$

You try

$$
7 \sqrt{10}-6 \sqrt{3}
$$

$$
4 \sqrt{14}-3 \sqrt{8}
$$

$$
-5 x \sqrt[3]{54 x}+7 \sqrt[3]{2 x^{4}}
$$

Add or subtract as indicated.

$$
\sqrt[3]{16 x^{4}}-7 x \sqrt[3]{-2 x}+\sqrt[3]{54 x}
$$

$$
\sqrt[3]{8 z^{4}}-2 z \sqrt[3]{-27 z}+\sqrt[3]{125 z}
$$

Multiply and simplify
$\sqrt{5}(3-4 \sqrt{5})$
$\sqrt[3]{2}(3+\sqrt[3]{4})$

$$
\begin{aligned}
& \sqrt{6}(3-5 \sqrt{6}) \\
& \sqrt[3]{12}(3-\sqrt[3]{2})
\end{aligned}
$$

