Radicals

Definition nth root

$$
\sqrt[n]{b}=a \text { means } b=a^{n}
$$

- if $n \geq 2$ and even then a and b must be greater than or equal to 0 .
- if $n \geq 3$ and odd, then a and b can be any real number.
$\ln \sqrt[n]{b}:$
The symbol $\sqrt{ }$ is called the radical
n is called the index
b is called the radicand
if there is no index, it is 2

Evaluate $\quad 4+7-7$

$$
\begin{array}{lll}
\sqrt{9}=3 & \sqrt{49}=7 & \sqrt[4]{16}=2 \\
\sqrt{3^{2}}=3 & \sqrt{7^{2}} & \sqrt[4]{2^{4}}=2
\end{array}
$$

$$
\begin{aligned}
& \sqrt[3]{64} \quad q \sqrt[3]{-8}=-2 \sqrt[4]{81} \\
& \underbrace{2} 3^{2} \\
& \sqrt[4]{4} \\
& \sqrt[3]{2^{3} \cdot 2^{3}} 2^{3} \\
& 2 \cdot 2=4
\end{aligned}
$$

You try

$$
\begin{array}{ll}
\sqrt{121} & \sqrt[3]{125} \\
\sqrt[3]{-216} & \sqrt[5]{32}
\end{array}
$$

Simplifying
If $n \geq 2$ is a positive integer and a is a real number, then

$$
\begin{aligned}
& \sqrt[n]{a^{n}}=a \quad \text { if } n \geq 3 \text { is odd } \\
& \sqrt[n]{a^{n}}=|a| \quad \text { if } n \geq 2 \text { is even }
\end{aligned}
$$

Reduce

$$
\sqrt{x^{2}}=|x| \quad \sqrt[5]{x^{5}}=x
$$

You try

$$
\sqrt[6]{z^{6}}|z|
$$

Simplify
$\sqrt{18}$

Simplify
$5 \sqrt[3]{24}=5 \sqrt[3]{2^{3} \cdot 3}$
(2) $12 \quad 5 \cdot 2 \sqrt[3]{3}$
$10 \sqrt[3]{3}$

$$
\sqrt[4]{20}
$$

(remember $\sqrt{x^{2}}=|x|$)

You try

$$
\sqrt{48}
$$

$$
4 \sqrt[3]{54}
$$

$\sqrt{200 a^{2}}$
$\sqrt[4]{40}$

Simplify

Remember that

$$
\begin{aligned}
& \sqrt[n]{a^{n}}=a \quad \text { if } n \geq 3 \text { is odd } \\
& \sqrt[n]{a^{n}}=|a| \quad \text { if } n \geq 2 \text { is even }
\end{aligned}
$$

For example

$$
\begin{aligned}
& \sqrt{x^{2}}=|x| \quad \sqrt[3]{x^{3}}=x \quad \sqrt[4]{x^{4}}=|x| \quad \text { and so } \\
& \text { on }
\end{aligned}
$$

Reduce

$$
\begin{aligned}
& \sqrt{x^{6}}=\sqrt{\left(x \cdot x_{i} \cdot \frac{x \cdot x_{i} x \cdot x_{j}}{x}\right.}=\left|x^{3}\right| \\
& =\left|x^{3}\right|
\end{aligned}
$$

$$
\sqrt[3]{x^{12}}=x^{4}
$$

You try

$$
\sqrt{48}
$$

$$
4 \sqrt[3]{54}
$$

$\sqrt{200 a^{2}}$
$\sqrt[4]{40}$

Reduce
$\sqrt{20 x^{10}}$

You try
$\sqrt{75 a^{6}}$

Simplify

