Exponent Rules

Simplify (Show why)
${\underset{\text { base }}{x^{2}}}_{x^{(2)}}$

Product Rule for exponents

$$
a^{m} \cdot a^{n}=a^{m+n}
$$

Simplify

$$
2^{2} \uparrow^{2}=2^{3} \quad 3 z^{2}{ }^{2}\left(\mathbb{4} z^{4}=12 z^{6}\right.
$$

You try

$$
(-3)^{2} \cdot(-3)^{3} \quad 5 x^{2} \cdot\left(-2 x^{5}\right)
$$

Simplify (Show Why)

$$
\frac{y^{(0)}}{y^{2}}=\frac{y \cdot y \cdot y \cdot y \cdot y \cdot y}{y \cdot y}=y^{4}
$$

Quotient Rule for exponents
 $$
\frac{a^{m}}{a^{n}}=a^{m-n} \quad \text { if } a \neq 0
$$

Simplify

$$
\frac{8^{5}}{8^{(3)}}=8^{2} \quad \frac{27 z^{9}}{12 z^{4}}=\frac{9 z^{5}}{4}
$$

You try

$$
\frac{y^{8}}{y^{6}} \quad \frac{-24 b^{5}}{16 b^{3}}
$$

Zero-exponent Rule

$$
a^{0}=1 \quad \text { if } a \neq 0
$$

Simplify

$$
3^{0}=1 \quad \pi^{0}=1 \quad\left(\partial \theta+\Phi \Omega-\wp^{0}\right)^{0}=1
$$

Negative-exponent Rule

$$
a^{-n}=\frac{1}{a^{n}} \quad \text { or } \quad \frac{1}{a^{-n}}=a^{n} \quad \text { if } a \neq 0
$$

Simplify

$$
\frac{3^{-4}}{1}=\frac{1}{3^{4}} \quad \frac{4 x-5}{x} \frac{4}{x^{5}} \quad \frac{1}{3^{-2}} 5=3^{2}
$$

$$
\begin{aligned}
& \text { You try } \\
& \frac{5^{-3}}{1} \frac{1}{5^{3}}
\end{aligned}
$$

$$
\frac{5}{y^{3}} 5 y^{3}
$$

Simplify (Show Why)

$\underline{\underline{(3)^{(5)}}{ }^{2}}$

$\left(3^{2}\right)\left(3^{2}\right)\left(3^{2}\right)\left(3^{2}\right)=3^{18}$

Power rule for exponential expressions of a power
$\left(a^{m}\right)^{n}=a^{m n}$

Simplify

$$
\left(4^{3}\right)^{5}=4^{15} \quad\left[(-3)^{3}\right]^{2}=(-3)^{6} \quad\left(6^{3}\right)^{0}=1
$$

$$
\left(2^{2}\right)^{3}=2^{6}
$$

$$
\left(\frac{\left(z^{3}\right)^{-6}}{z}\right)_{\frac{1}{(2)^{18}}}^{-18}
$$

$$
\begin{gathered}
\left(s^{-3}\right)^{-7} \\
\int^{21}
\end{gathered}
$$

Product to a power

$$
(a \cdot b)^{\text {II }}=a^{n} \cdot b^{n}
$$

Simplify
$(3 \overline{3})^{4}$

$$
\rightarrow_{3}^{3} 3^{4} z^{4}
$$

$$
\begin{aligned}
& \left(3 y^{-2}\right)^{-3} y^{6} y^{6}-3 a^{2} \sqrt{2}^{2} \\
& -3 y^{6}=\frac{y^{3}}{27}(-3)^{2} a^{4}=9 a^{4}
\end{aligned}
$$

You try
$(5 y)^{3}$
$\left(4 a^{3}\right)^{-2}$

Quotient to a power

$$
\begin{aligned}
& \left(\frac{a^{2}}{b^{2}}\right)^{n}=\frac{a^{n}}{b^{n}} \quad \text { if } b \neq 0 \\
& \left(\frac{a}{b}\right)^{-(n)}=\left(\frac{b^{2}}{a^{2}}\right)^{\infty} \text { if } a \neq 0, b \neq 0
\end{aligned}
$$

Simplify

$$
\begin{aligned}
&\left(\frac{w^{2}}{4^{3}}\right)^{3}=\frac{w^{3}}{4^{3}} \frac{w^{3}}{b^{4}}\left(\frac{2 w^{2} x^{9}}{y^{3}}\right)^{=}=\frac{2^{4} w^{8}}{y^{12}}\left(\frac{x}{2}\right)^{-5} \\
& \frac{8 \mid w^{8}}{y^{12}}\left(\frac{2}{x^{2}}\right)^{5}=\frac{2^{5}}{x^{5}} \\
& \frac{1 b x^{3}}{x^{5}}
\end{aligned}
$$

You try

$$
\left(\frac{z}{3}\right)^{4} \quad\left(\frac{4}{3}\right)^{-2} \quad\left(\frac{3 a^{-2}}{b^{4}}\right)^{3}
$$

$$
\begin{aligned}
& a^{0}=1 \quad \text { if } a \neq 0 \\
& a^{-n}=\frac{1}{a^{n}} \quad \text { or } \quad \frac{1}{a^{-n}}=a^{n} \quad \text { if } a \neq 0 \\
& a^{m} \cdot a^{n}=a^{m+n} \\
& \frac{a^{m}}{a^{n}}=a^{m-n} \quad \text { if } a \neq 0 \\
& \left(a^{m}\right)^{n}=a^{m \cdot n} \\
& (a \cdot b)^{n}=a^{n} \cdot b^{n} \\
& \left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \quad \text { if } b \neq 0 \\
& \left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n} \quad \text { if } a \neq 0, b \neq 0
\end{aligned}
$$

Simplify

$$
\frac{a^{3} b^{-1}}{\left(a^{2} b\right)^{3}}
$$

Simplify

$$
\left(\frac{3 x y}{x^{2} y^{-2}}\right) \cdot\left(\frac{9 x^{2} y^{-3}}{x^{3} y^{2}}\right)^{-1}
$$

